AN EFFICIENT SYNTHESIS OF 2-HYDROXY-GIBBERELLINS

M.H.Beale, J.MacMillan and I.K.Makinson

(AFRC Research Group, School of Chemistry, The University, Bristol BS8 1TS)

Methyl gibberellate(4) has been converted into 2-epi-gibberellin A29 methyl ester(2)in 48% overall yield by a route avoiding protection of the ring D functionality.

Ongoing biochemical investigations, within this laboratory, into the biosynthesis and mode of action of the gibberellin plant growth hormones (GAs) require quantities of the rare gibberellin A_{29} (1). Our previous routes¹ to 2-hydroxy-gibberellins from the available fungal GAs, e.g. GA $_3$ (3), have all involved electrophilic addition of ROBr to 2,3-olefins such as (5). This route required "protection" of the more reactive 16,17olefin by oxidative cleavage to the 16-ketone before the 2,3-olefin was introduced. Reconstruction of the 16,17-olefin at a later stage was achieved by Wittig methylenation, a reaction made difficult by the low reactivity of such bicyclo-octanones, especially in the presence of a 13-hydroxy function 2 , which has to be protected in order to avoid a rearrangement³. keto-carbinol We now report a new method for the synthesis of 2-hydroxy-gibberellins, illustrated by the preparation of 2-epi-gibberellin A29 methyl ester (2), which requires no protection or manipulation of rings C/D.

Corey et al⁴, in their early work on the total synthesis of gibberellic acid, described the hydrolysis and iodolactonisation of iso-GA₃ methyl ester (6) which gave the iodolactone (10). Our initial strategy was to attempt to prepare the 3-deoxy-analogue (7) which by the Corey procedure would lead to the iodolactone (11) and hence by Bu_3SnH reduction to 2-epi-GA₂₉ methyl ester (2).

Treatment of iso-GA₃ methyl ester(**6**) with KH/l8crown6/CS₂(THF,12hr,20[°]) followed by MeI(lhr) gave, not the expected S-methyl-dithiocarbonate(**8**), but a mixture (1:5) of the triene-acid (**12**)¹² and the cyclic-dithiocarbonate (**13**)¹², formed by intramolecular displacement of the lactone system by the intermediate 3-dithiocarbonate anion. These compounds could be separated, with difficulty, by flash chromatography but treatment of the mixture with Bu₃SnH (toluene, AIBN, lhr, reflux) resulted in fragmentation of the cyclic dithiocarbonate to the triene-acid (**12**) in an analogous reaction to the Corey-Winter alkene synthesis⁵. As an alternative to thioesters, we then examined the possibility of deoxygenation at C-3 by chlorination followed by Bu₃SnH reduction. However, treatment of iso-GA3 methyl ester (**6**), or its l3-acetate, with PCl₅ or with POCl₃ gave intractable mixtures.

Having failed to prepare (7) by direct deoxygenation of (6) we turned our attention to the triene-acid (12). This compound, previously used as a relay in the Corey total synthesis of gibberellic acid^{4,6} is more readily obtained from methyl gibberellate (4) by bromination with CBr₄/PPh₃ (acetone/pyridine,10:1,reflux,5hr), a reaction which in our hands⁷ consistently gave a mixture (3:1) of the 1β - and 3α -allylic bromides (14) and (15) in a combined yield of 84%. Reduction of (14) and (15) with activated zinc (EtOAc/CH₃COOH, 6:1, lhr.) gave the trieneyield⁸. Treatment of (12) with NaHCO₃/I₂ 938 (12) in acid (THF/CH₂Cl₂/H₂O,1:1:2, lhr.) resulted in a single iodolactone (91% yield), identified by its ¹H-n.m.r. spectrum [5.82(H-1); 4.93(t,H-2); 4.52(d,H-3); $J_{1,2}=J_{2,3}=5Hz$] as the 3 β -iodo-19,2- lactone (9)¹². The regiospecificity of this reaction was surprising to us, particularly as Corey and Danheiser⁹ in studies on the bicyclic model compound (16), obtained a mixture of bromolactones (17) and (18) after treatment with KBr₃. Similarly these workers¹⁰ have also shown that iodoetherisation of the triene-triol (19)gave the 1β -iodo- 19,10-ether(20)¹¹.

Reduction of (9) with Bu₃SnH (toluene,AIBN,reflux,lhr) proceeded as expected to give 3-deoxy-iso-GA₃ (7) in 98% yield. Thus the original intermediate target (7), was achieved, aVbeit by a longer route than originally intended, in reasonable overall yield (70%) from methyl

1110

gibberellate. Lactone hydrolysis, followed by iodolactonisation onto the 1,10-olefinic bond was accomplished in "one pot" as described by Corey et al⁴. viz:-(7) was treated with aqueous KOH (0.4M)/THF,1:1 (4hr, room temperature) and then, after adjustment of the pH to 9.0, with a solution of I₂ in CH₂Cl₂ for 1.5hr (vigorous stirring). This gave the l β -iodo-2 α -hydroxy-19,10-lactone (11)(72% yield), which on treatment with Bu₃SnH in the normal way produced 2-epi-GA₂₉ methyl ester (2) in 97% yield.

The overall yield of (2) from methyl gibberellate (4) was 48%. (2) has been converted into gibberellin A_{29} (1) by oxidation to the 2-ketone followed by $NaBH_4$ reduction¹. In this work (2) was recovered unchanged when the more desirable Mitsunobu inversion (PPh₃,DEAD,PhCOOH,THF,24hr) was attempted. However, the route described above is the most efficient yet reported for the synthesis of gibberellin A_{29} and should also be applicable to the preparation of other 2-hydroxy-gibberellins such as GA_{40} and GA_{51} .

REFERENCES AND NOTES

l.L.J.Beeley	and	J.MacMillar	1,	J.Chem.Soc.	Perkin	I,	1022,1976	;
M.H.Beale	anđ	J.MacMillan,	,	J.Chem.Soc.	Perkin	I,	394,1981	;
P.S.Kirkwood	, J	.MacMillan	and	M.H.Beale,	J.Chem	.Soc.	Perkin	<u> </u>
699,1982.								

^{2.}For a discussion of the Wittig methylenation of gibberellin-16-ketones see L.N.Mander and J.V.Turner, Tetrahedron Lett., 22,4149,1981.

- 3.J.R.Bearder, V.M.Frydman, P.Gaskin, J.MacMillan, C.M.Wels and B.O.Phinney, <u>J.Chem.Soc. Perkin I</u>, 173,1976.
- 4.E.J.Corey, T.M.Brennan and R.L.Carney, J.Am.Chem.Soc., 93, 7316, 1971.
- 5.E.J.Corey and R.A.E.Winter, J.Am.Chem.Soc., 87, 934, 1965.
- 6.E.J.Corey, R.L.Danheiser, S.Chandrasekaran, G.E.Keck, B.Goplan, S.D.Larsen, P.Siret and J-L.Gras, <u>J.Am.Chem.Soc</u>.,<u>100</u>,8034,1978.
- 7.It reported by J.Z.Duri, B.M.Fraga and J.R.Hanson, has been J.Chem.Soc. Perkin I, 3016,1981. that treatment of methyl gibberellate(4) with CBr_4/PPh_3 in acetone at reflux gave solely the 1 β -bromo-isomer(14), while in pyridine the 1 β ,13-dibromide was the only product. In this work we observed no reaction when acetone alone was solvent. When 10% pyridine in acetone was solvent we obtained the 1β and 3α -mono-bromides in a 3:1 ratio (84% yield). In pyridine alone we again observed only these compounds (3:1 ratio,75% isolated yield), with no trace of dibromides. The isomers were separable by flash chromatography and were identified by ¹H nmr comparison with samples previously prepared in this laboratory (J.R.Bearder, P.S.Kirkwood and J.MacMillan, J.Chem.Soc. Perkin I, 672,1981).
- 8.Samples of the 1(10), 2, 16-triene-acid $(12)[\lambda max270(5200)]$ prepared by this route were essentially pure. However, material prepared from Bu₃SnH reduction of the cyclic dithiocarbonate was contaminated with the isomeric 1,9,16-heteroannular-triene-acid [$\lambda max247$ (3590)], identified by its ¹H and ¹³C nmr spectra. The formation of this isomer was also observed in solutions of (12) on standing at room temperature for several days.
- 9.E.J.Corey and R.L.Danheiser, Tetrahedron Letters, 4477, 1973.
- 10.For a discussion see R.L.Danheiser, in Strategies and Tactics in Organic Synthesis, Ed. T.Lindberg, p21, 1984, Academic Press.
- 11.In addition to the halolactonisations discussed in refs. 9 and 10, other electrophile-assisted lactonisations of (12) have also been of variable regiospecificity; e.g. MCPBA gives the 3β-hydroxy-19,2-lactone (6)(ref.4) while CF₂COOH forms the 19,10-lactone-2,3-olefin (GA₅). (E.P.Serebryakov, J.General Chem. USSR, 1849,1981).

12.All compounds gave IR,nmr and high resolution mass spectra consistent with their assigned structures. Selected ¹H nmr data (200 MHz,CDCl₃):-(12) §6.10(1H,q,J=10,5,2-H),5.62(1H,dt,J=5,2.5,2.5,1-H), 5.41(1H,d,J=10, 3-H),5.08and4.94(each 1H,br,s,17-H₂),3.70(3H,s,OMe),3.30(1H,br,5-H), $3.08(1H,d,J=4,6-H),1.33(3H,s,18-H_3).$ (13) δ 5.34(1H,br,1-H),5.20(1H,d,J=5.5,3-H),5.10and5.01(each 1H,br,s,17-H₂),4.96(1H,br,2-H),3.75(3H,s,OMe),3.21(2H,s,5-Hand6-H),1.56(3H,s,18-H₂) (9) δ 5.82(1H,dt,J=5,2.5,2.5,1-H),5.14and4.99(each 1H,br,s,17-H₂),4.93 (1H,t,J=5,2-H),4.52(1H,d,J=5,3-H),3.75(3H,s,OMe),3.26(1H,dd,J=7,2.5,5-H) $2.58(1H,d,J=7,6-H),1.16(3H,s,18-H_3).$ (7) 5.95(1H,dt,J=5,2.5,2.5,1-H),5.13 and $4.97(each 1H,br,s,17-H_2),4.86$ (1H,t,J=5,2-H),3.74(3H,s,OMe),3.18(1H,dd,J=6,2.5,5-H),2.59(1H,d,J=6,6-H) 1.25(3H,s,18-H₃). (11) §5.27 and 4.99 (each 1H, br, s, 17-H₂), 4.61 (1H, d, J=4, 2-H), 4.49 (1H, s, 1-H), $3.75(3H,s,OMe), 3.37(1H,d,J=10,5-H), 2.66(1H,d,J=10,6-H), 1.11(3H,s,18-H_3).$ (2) 5.25 and 4.95 (each 1H, br, s, 17-H₂), 4.30 (1H, t, J=4, 2-H), 3.72 (3H, s, OMe), $2.73(1H,d,J=10,6-H), 2.60(1H,d,J=10,5-H), 1.10(3H,s,18-H_3).$

(Received in UK 3 January 1986)